PWM Control Circuit – TL494

The TL494 incorporates all the functions required in the construction of a pulse-width-modulation (PWM) control circuit on a single chip. Designed primarily for power-supply control, this device offers the flexibility to tailor the power-supply control circuitry to a specific application.

PWM Control Circuit – TL494

  • Complete PWM Power-Control Circuitry
  • Uncommitted Outputs for 200-mA Sink or Source Current
  • Output Control Selects Single-Ended or Push-Pull Operation
  • Internal Circuitry Prohibits Double Pulse at Either Output
  • Variable Dead Time Provides Control Over Total Range
  • Internal Regulator Provides a Stable 5-V Reference Supply With 5% Tolerance
  • Circuit Architecture Allows Easy Synchronization

PWM Control Circuit - TL494

The TL494 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V, 5%-precision regulator, and output-control circuits.

TL494 Related Links

Texas Instruments – Tech Pioneer

Texas Instruments, better known in the electronics industry (and popularly) as TI, is an American company based in Dallas, Texas, USA, renowned for developing and commercializing semiconductor and computer technology.

Texas Instruments – TI Semiconductors

Chip IC Products include Solutions in Analog, DSP- Digital Signal Processing, Power Management, A/D Converter, Microcontroller based Systems, Mixed Signal Designs, Multiplexers and Thermal Management Solutions.

A Vintage Calculator from TI

Texas Instruments

Texas Instruments – wiki

TI produced the world’s first commercial silicon transistor in 1950, and designed and manufactured the first transistor radio in 1954. Jack Kilby invented the integrated circuit in 1958 while working at TI’s Central Research Labs.

TI also invented the hand-held calculator in 1967, and introduced the first single-chip microcontroller (MCU) in 1970, which combined all the elements of computing onto one piece of silicon.

Texas Instruments - TI Semiconductors

A Developer Evaluation Embedded System

Texas Instruments Embedded Portfolio Overview is made up of three sub-divisions: Wireless, Microcontrollers, and Processors

Embedded processors are the processing brains of electronics that gather inputs from analog chips and perform computational processing to operate a system.

ICL7135 Intersil Device Information

The Intersil ICL7135 precision A/D converter, with its multiplexed BCD output and digit drivers, combines dual-slope conversion reliability with ±1 in 20,000 count accuracy and is ideally suited for the visual display DVM/DPM market. The 2.0000V full scale capability, auto-zero, and auto-polarity are combined with true ratiometric operation, almost ideal differential linearity and true differential input. All necessary active devices are contained on a single CMOS lC, with the exception of display drivers, reference, and a clock.

ICL7135 4 and Half A to D converter with BCD Output

ICL7135 Device Information

  • Accuracy Guaranteed to ±1 Count Over Entire ±20000 Counts (2.0000V Full Scale)
  • Guaranteed Zero Reading for 0V Input
  • 1pA Typical Input Leakage Current
  • True Differential Input
  • True Polarity at Zero Count for Precise Null Detection
  • Single Reference Voltage Required
  • Overrange and Underrange Signals Available for Auto-Range Capability
  • All Outputs TTL Compatible
  • Blinking Outputs Gives Visual Indication of Overrange
  • Six Auxiliary Inputs/Outputs are Available for Interfacing to UARTs, Microprocessors, or Other Circuitry
  • Multiplexed BCD Outputs

See related delabs projects

ICL8038 Versatile Waveform Generator

The ICL8038 waveform generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from 0.001Hz to more than 300kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage…. The chip is available in some stores, not in production. (This is another chip of intersil i used for many things – delabs)

ICL8038 Device Information

  • Low Frequency Drift with Temperature 250ppm/oC
  • Low Distortion 1%(SineWave Output)
  • High Linearity 0.1%(Triangle Wave Output)
  • Wide Frequency Range 0.001Hz to 300kHz
  • Variable Duty Cycle 2%to 98%
  • High Level Outputs TTL to 28V
  • Simultaneous Sine, Square, and Triangle Wave Outputs
  • Easy to Use – Just a Handful of External Components Required

Everything You Always Wanted to Know About the ICL8038

ICL8038 Versatile Waveform Generator

Use in Phase Locked Loops – Its high frequency stability makes the ICL8038 an ideal building block for a phase locked loop as shown in Figure 9. In this application the remaining functional blocks, the phase detector and the amplifier, can be formed by a number of available ICs (e.g., MC4344, NE562).

The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 10.