PWM Control Circuit – TL494

The TL494 incorporates all the functions required in the construction of a pulse-width-modulation (PWM) control circuit on a single chip. Designed primarily for power-supply control, this device offers the flexibility to tailor the power-supply control circuitry to a specific application.

PWM Control Circuit – TL494

  • Complete PWM Power-Control Circuitry
  • Uncommitted Outputs for 200-mA Sink or Source Current
  • Output Control Selects Single-Ended or Push-Pull Operation
  • Internal Circuitry Prohibits Double Pulse at Either Output
  • Variable Dead Time Provides Control Over Total Range
  • Internal Regulator Provides a Stable 5-V Reference Supply With 5% Tolerance
  • Circuit Architecture Allows Easy Synchronization

PWM Control Circuit - TL494

The TL494 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V, 5%-precision regulator, and output-control circuits.

TL494 Related Links

SG2525 – SG3525 – PWM SMPS Regulator Chip

SG2525 – SG3525 – PWM SMPS Regulator Chip. A second generation ic switch mode controller optimized for high frequency.

100kHz Half Bridge Convertor – SG3525

The SG3525A pulse width modulator control circuit offers improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The on-chip +5.1 V reference is trimmed to +/-1% and the error amplifier has an input common-mode voltage range that includes the reference voltage, thus eliminating the need for external divider resistors. Half Bridge, Push-Pull.

SG3525 usage in SMPS 500W – It was used in Parallel for Electroplating with a central Load sharing control between modules.

SG2525 - SG3525 - PWM SMPS Regulator Chip

Specs

  • 8.0 V to 35 V Operation
  • 5.1 V +/- 1.0% Trimmed Reference
  • 100 Hz to 400 kHz Oscillator Range
  • Separate Oscillator Sync Pin
  • Adjustable Deadtime Control
  • Input Undervoltage Lockout
  • Latching PWM to Prevent Multiple Pulses
  • Pulse-by-Pulse Shutdown
  • Dual Source/Sink Outputs: +/- 400 mA Peak

Circuits –

Power Electronics Section

Here are power supply, inverter, drives, chargers and high current equipment diagrams and links. There are Mosfet and Thyristor circuits too.

Power Electronics Section

Power Supplies, Inverters, UPS, Chargers, Electro Plating, Precision Welding-erosion, Coating Metals and many other Processes are made of high current circuits. Even in measurement of parameters like Micro-Ohm high currents are involved. Electronic Circuits are required in such products to give control to time, current, frequency and voltage in order to accomplish with the required precision a process or job.

Power Electronics Section - delabs
In any power equipment, efficiency and reduction of bulk is crucial so SMPS and high frequency control is an important part of this domain. These products also generate EMI-RFI. Product Safety Study is also vital.

The Power Circuits Section has been updated.

Power Electronics Design Methods

I first saw this practically in the Orthodox Cherokee SMPS. This is where we differentiate from Engineered Products and just Mass Production without following standards. The Cherokee SMPS was a work of art, perfect in all respects.

The Copper Desert or Isolation Land

There is a No Man’s Land in PCB. Any good power electronics designer should/will know. Product Safety and HV Isolation, Quality and Reliability all depend on this.

High Energy Circuits

Power Electronics Design Methods

These things don’t come overnight, it is a culture, learning, experience and integrity of some of these American Firms. Reliability and Product safety are important. Every human values his life very much. A manufacturer too should appreciate this.

Coming back to isolation, Keep in mind creepage distance, High energy circuits and Low voltage circuits should have clear isolation, use the best insulation. Fire and shock hazard. Mains HV transitions, spikes.

Regulated High Voltage Power Supply

Power supply faces all these, even other areas where a Human Life or Property can be endangered.

HV High Voltage Reliability and Safety

Use a Servo Stabilizer or CVT Constant Voltage Transformer or at least an Isolation Transformer. The First Defense form HV Surges, Spikes.

High Voltage Polyester & Polypropylene Metallized Capacitors in Stepdown Supplies should be Fire Retardant & Self Healing with a MOV too.