Technical-Reference (Page 5)

SG2525 – SG3525 – PWM SMPS Regulator Chip. A second generation ic switch mode controller optimized for high frequency.

100kHz Half Bridge Convertor – SG3525

The SG3525A pulse width modulator control circuit offers improved performance and lower external parts count when implemented for controlling all types of switching power supplies. The on-chip +5.1 V reference is trimmed to +/-1% and the error amplifier has an input common-mode voltage range that includes the reference voltage, thus eliminating the need for external divider resistors. Half Bridge, Push-Pull.

SG3525 usage in SMPS 500W – It was used in Parallel for Electroplating with a central Load sharing control between modules.

SG2525 - SG3525 - PWM SMPS Regulator Chip

Specs

  • 8.0 V to 35 V Operation
  • 5.1 V +/- 1.0% Trimmed Reference
  • 100 Hz to 400 kHz Oscillator Range
  • Separate Oscillator Sync Pin
  • Adjustable Deadtime Control
  • Input Undervoltage Lockout
  • Latching PWM to Prevent Multiple Pulses
  • Pulse-by-Pulse Shutdown
  • Dual Source/Sink Outputs: +/- 400 mA Peak

Circuits –

Here are power supply, inverter, drives, chargers and high current equipment diagrams and links. There are Mosfet and Thyristor circuits too.

Power Electronics Section

Power Supplies, Inverters, UPS, Chargers, Electro Plating, Precision Welding-erosion, Coating Metals and many other Processes are made of high current circuits. Even in measurement of parameters like Micro-Ohm high currents are involved. Electronic Circuits are required in such products to give control to time, current, frequency and voltage in order to accomplish with the required precision a process or job.

Power Electronics Section - delabs
In any power equipment, efficiency and reduction of bulk is crucial so SMPS and high frequency control is an important part of this domain. These products also generate EMI-RFI. Product Safety Study is also vital.

The Power Circuits Section has been updated.

Embedded Technology Journal and FPGA Structured ASIC Journal are now in EE Journal

EE Journal – Embedded FPGA ASIC Design

“The first year of a new publication is always exciting, but Embedded Technology Journal first year has been nothing short of stellar. We began, of course, with modest-sized audiences mulling our strange stories about putting tiny little computers into toasters and such. People pondered processors, studied software, meditated about memories, brushed up on busses, wrestled with RTOS, and fumbled with FPGAs. We covered applications ranging from smart phones to avionics and touched on some truly unique systems like golf radar and digital scarecrows.”

An approach to comprehensively verify a multi-clock design

An approach to comprehensively verify a multi-clock design

“One example of a combined solution is outlined in Figure 2, where timing exceptions between synchronous clocks are verified using Atrenta’s SpyGlass-TXV timing exception verification tool and the correct synchronization of interfaces between asynchronous clocks is handled by the SpyGlass-CDC tool, giving complete overall coverage.”

“Some people collect stamps, coins or baseball cards, I collect electronic circuit schematics. I own several book shelves and file cabinets full of electronic circuit books, IC application manuals and circuit encyclopedias. I often use my collection for reference.”

Imagineering On-line Magazine

David A. Johnson, – P.E. consulting electronics engineer.

(This resource by dave is very important for Electronic Enthusiasts, Engineers and R&D Engineers. I say this as an R&D Professional with more than 20 years off the ground)

Capacitance Proimity Switch Technology -The Design Corner, Imagineering E-Zine

Capacitance Proimity Switch Technology -The Design Corner, Imagineering E-Zine

“These switch circuits used a sensitive high impedance circuit to detect the small AC power line signals, picked up by the human body from nearby appliances.”

(These are the type of technologies that lead to the Touch Screens on Tablets and Phones.